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ABSTRACT 

The design and mechanization of frequency demodulators for use 
in telemetry communications are discussed. The frequency demodu- 
lator consists of an ordinary phase-locked loop (PLL) followed by a 
linear-output filter. The linear and quasi-linear PLL demodulator 
models are optimized by choosing the loop filter transfer function that 
minimizes the mean-squared phase error, while the output filter trans- 
fer function is optimized by selecting the linear filter that minimizes 
the mean-squared frequency error. In general these filters are adaptive 
in that their pole-zero configuration depends on the available signal 
power, the noise spectral density, and the modulation index. For this 
reason, i.e., because the filters are difficult to mechanize, two alternate 
and more easily implemented suboptimum frequency demodulators 
are analyzed. These are obtained by selecting the loop and output 
filters that are optimum for a certain set of design levels and by pre- 
ceding the loop either by a bandpass limiter or an automatic gain 
control (AGC) amplifier. For parameter levels that remain close to 
the design levels, either of these realizations performs almost optimally. 

Synthesis procedures for the optimum-loop and output filters are 
given, and the transient behavior of the optimized system is deter- 
mined. For various receiver threshold characteristics, the performance 
of the linear and quasi-linear demodulator models is graphically illus- 
trated and compared for all three receiver realizations. A major con- 
clusion from these results is that the PLL that is preceded by an AGC 
amplifier outperforms the same loop when it is preceded by a bandpass 
limiter. Heretofore, analysis of the behavior of the PLL as a frequency 
discriminator has avoided considering the effects on receiver perfor- 
mance when the quasi-linear or linear demodulator models are pre- 
ceded by an AGC amplifier or a bandpass limiter. 

Finally, an amplitude-modulated single-sideband or double-sideband 
system (which is “amplitude matched” to the same modulating spectra) 
is compared with that of the optimum and suboptimum linear demodu- 
lators. The results are useful when one is faced with the problem of 
designing optimum and near-optimum frcqucncy demodulators. 

V 
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1. INTRODUCTION 

OUTPUT 
FILTER of the Literature 

The purpose of this Report is to review, investigate, 
and determine design trends and to present an opti- 
mum theory of phase or frequency demodulation 
suitable for use in designing discriminators used in 
telemetry communication systems, e.g., ballistic missiles, 
space communications, etc. The theory and results pre- 
sented are applicable to such practical problems as 
designing optimum and suboptimum frequency dis- 
criminators (1) for detecting video information relayed 
to the Earth concerning planetary surface characteris- 
tics, (2) for use in detecting audio signals reflected from 
one of the neighboring planets, or (3) for detecting 
scientific data transmitted from a particular spacecraft. 
The graphical results presented are valid for the de- 
modulation of a radio frequency (RF) carrier that has 
been frequency-modulated by an RC-filtered white- 
noise spectrum and corrupted in the channel by additive 
white Gaussian noise. On the other hand, the theory may 
be applied to the demodulation or filtering of rather 
arbitrary types of stationary signal and noise processes. 

. 

y ( t )  = s(& 

Section 11-A defines the problem and gives a brief 
history of the significant papers that have been written 
on frequency demodulation by means of phase-locked 
and frequency-feedback detectors. Section 11-B is de- 
voted to the problem of specifying equivalent receiver 
models for the PLL. In particular, three models are pre- 
sented: the “Exact-Equivalent Model”, the Quasi-linear 
Model, and the Linear Model. The phase-error spectral 
density is derived for the latter two models and related 

to the mean-squared Wiener error. In Section 11-C we 
discuss and derive two types of optimum Wiener filters. 
These are commonly referred to as the realizable (zero- 
lag) and nonrealizable (infinite-lag) filters. Section 11-D 
has been used for specifying the optimum loop and out- 
put filter transfer functions and the ways of physically 
realizing and synthesizing these functions with electrical 
networks. Section 11-E is devoted to specifying the per- 
formance of the demodulator when the loop and output 
filter pole-zero configurations are fixed in accordance 
with a priori given design levels and the PLL is pre- 
ceded by an AGC amplifier. The receiver “threshold 
characteristic” is also defined in this Section. Section 11-F 
presents the demodulator performance when the received 
signal power differs from the initial design value, while 
Section 11-G is used for developing the performance of 
the demodulator when the PLL is preceded by a band- 
pass limiter. This Section succinctly presents the operat- 
ing characteristics of the bandpass limiter and its role 
when used ahead of the PLL. Section 11-H is concerned 
with the transient response of the optimum demodulator 
and compares this response with that obtained if the 
demodulator is used for tracking purposes. Finally, Sec- 
tion 11-1 is utilized for graphically illustrating and com- 
paring the performance of the optimum demodulator 
with two more easily mechanized suboptimum demodu- 
lators. Graphical results are given (for various threshold 
characteristics) for both the linear and quasi-linear 
demodulator models. These results are compared with 
analogous results for balanced and single-sideband am- 
plitude demodulation. 

II. GENERAL THEORY AND RESULTS 

1 
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spectral density of N o  w/cps before being available as a 
waveform +(t) to the receiver. The random processes 
m(t) and n(t) are presumed to be wide-sense stationary 
and statistically independent. We intend to specify the 
optimum demodulator and two alternate, more easily 
implemented suboptimum demodulators (under several 
restrictive assumptions) for a given transmitter power P, 
noise spectral density No,  and VCO gain K t ,  and to inves- 
tigate the “output” signal-to-noise ratio relationship when 
the input power and the noise spectral density differ 
from those expected. 

We realize, of course, that the communication system 
of Fig. 1 represents only a small fraction of a complete 
telemetering link. The major difference, however, is that 
at the transmitter, several data signals (not necessarily 
different) say ml(t), . . . mx(t), are used to modulate N 
subcarrier oscillators. The modulated outputs of all sub- 
carrier oscillators are amplified and then multiplexed, 
thus providing a source of modulation energy that is 
used to modulate the master transmitter oscillator, For 
extraction of the transmitted information, we require (at 
the receiver) N detectors that are to be “matched to the 
N data signals. This double modulation technique, which 
is well known to telemetry system design engineers, is 
analogous to that employed in diversity systems used 
in telemetry (and other types of communications) for 
offsetting failures in receiving and transmitting equip- 
ment, for example, (1) loss of the R F  signal owing to 
cross-polarization, (2) multipath propagation and fading, 
(3) rocket flame attenuation, and (4) failures that are 
not considered to be important at the design time. The 
important thing here is that even though Fig. 1 does not 
depict an over-all multisignal telemetry link, the com- 
munication link shown does represent a system that 
ideally separates (zero crosstalk) the N subcarrier signals 
from the received signal; hence, it justifies the study to 
be carried out here. 

The history of frequency demodulation (or phase 
modulation for that matter) employing the Foster-Seeley 
type of discriminator (or phase detector) rests in a hier- 
archical arrangement of technical papers that are too 
numerous to mention here. Middleton (Ref. l), however, 
probably contains the most elaborate set of results and 
bibliography that is presently available. One major diffi- 
culty that is immediately encountered in employing 
ordinary discriminators of the Foster-Seeley type for use 
in long-range missiles or space flight telemetry communi- 
cation systems is the discriminator threshold, i.e., that 
point in the input-output signal-to-noise ratio character- 
istic where the noise captures the detector (see Ref. 1). 

The standard type of discriminator, i.e., a bandpass 
filter-limiter-discriminator followed by a low-pass filter, 
demonstrates an improvement over the amplitude- 
modulation (AM) system until the input signal-to-noise 
ratio reaches a low of about + 10 db. This high threshold 
has caused frequency modulation (FM) systems to be 
criticized for use in telemetry because of the large input 
powers required to maintain this signal-to-noise ratio. In 
attempting to reduce this threshold, present emphasis 
seems to be placed on two types of discriminators: the 
PLL detector and the frequency-feedback detector. 
Analytical work relating standard FM discriminator 
performance to FM discriminators employing negative 
feedback may be found in Refs. 2-6. Recently, Cahn 
(Ref. 7) has shown (using his linearized frequency- 
feedback receiver based on a twin-threshold concept) 
that a design approach influenced by the open-loop 
threshold for FM feedback yields a receiver sensitivity 
inferior to the PLL at large modulation indices. On the 
other hand, Develet (Refs. 8 and 9) presents the deriva- 
tion of a quasi-linear model for the frequency-feedback 
receiver and shows that (although the quasi-linear re- 
ceiver models differ in detail) the threshold for a 
“maximum sensitivity” FM feedback or PLL receiver is 
identical. 

Turning now to a brief history of the PLL, we find 
that the main idea seems to be due to Chaffee (Ref. 3). 
Among the first applications of the device appearing in 
the literature was its use as a synchronizing circuit 
(Ref. 10) while Richman (Ref. 11) applied the concept to 
color television systems. Jaffe and Rechtin (Ref. 12) and 
Viterbi (Ref. 13) presented the capabilities and behavior 
of the device when tracking doppler-shifted signals of 
known waveforms and where the receiver bandwidths 
were considerably narrower than the doppler shift (also 
see Ref. 14). Gilchriest (Ref. 15), Viterbi (Refs. 16, 17) 
and Choate (Ref. 18) presented results when the PLL 
was used as a telemetry discriminator and a tracking 
filter. The following work is related mainly to that of 
Viterbi (Refs. 16, 17) and Develet (Ref. 8). 

6. Equivalent Receiver Models 

It is well known that the PLL receiver of Fig, 1, i.e., 
the closed-loop portion of the receiver, is a nonlinear 
device. Furthermore, the “exact” performance of the loop 
in the absence of modulation and additive Gaussian 
noise is available only in special cases (Ref. 19). Conse- 
quently, we seek a workable model that will closely 
approximate the performance of the physical device 
when signal modulation and noise are present. 

2 
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1. Exact-Equivalent Receiver 

Denote the received waveform by $(t), i.e., 

q(t) = P s i n  root + el(t)] + n(t)  (1) 

n(t) = nl( t )  sin oot + n,(t) cos oot 

represents the noise process of infinite duration (Ref. 20). 
Both n1 and n2 are assumed to be statistically indepen- 
dent, stationary, white Gaussian noise processes of one- 
sided spectral density N o  w/cps. The reference signal 
r ( t )  at the output of the receiver’s VCO is presumed to 
be a sinusoid whose instantaneous frequency is related 
to the input control voltage e( t )  through the relationship 
(see Fig. 1) 

where 

e&) = K ,  /‘ e(T)dT 

Thus,the product of the input +(t) and ~ ( t )  may be shown 
to be related, in operational form, to the phase error +(t) 
by 

where all double-frequency terms have been neglected 
because neither the loop filter F(s) nor the VCO will 
respond significantly to them. Further, it may be shown 
(Ref. 19 and Ref. 8) that n’(t), consisting of two noise 
terms, is white Gaussian phase noise with the same spec- 
tral density as that of the original additive process n(t).  
Thus, to study the receiver structure from the input 
+(t) to the output e( t ) ,  Eq. (3)  evidences the pertinent 
quantities, and the PLL may be conveniently represented 
by the block diagram of Fig. 2. For convenience, the 
output filter F,(s) has also been included. Note that 
the receiver structure under study is now placed into a 
form that is familiar to control engineers, and we shall 
refer to this model as the “exact-equivalent receiver.” 

Fig. 2. Exact-equivalent receiver 

Even though the loop of Fig. 1 has been replaced by that 
of Fig. 2, it is still impossible to specify the “optimum” 
demodulator. The heart of the problem lies in the sinus- 
oidal nonlinearity. In the next Section we shall introduce 
a quasi-linear model that will approximate the operation 
of the loop when the phase error +(t) is small. 

2. Quasi-linear Receiver 

The quasi-linear model, introduced by Develet (Ref. 8), 
is based on Booton’s idea (Ref. 20) that any nonlinear 
device subjected to a Gaussian process may be replaced 
by an equivalent gain K .  The concept is simple and 
may be briefly described as follows: denote the input 
and response of an amplitude-sensitive element by xi  and 
x r  respectively. Let the output x ,  be written in the form 

X r  = f ( X i )  

where f  is the describing function of the element. Then 
for a particular input process, we select that value of 
K for which the mean-squared error 

is a minimum. (The bar signifies an average taken in the 
statistical sense.) For the problem at hand f  = sin [ 1. 
Assuming that the input +(t) to the nonlinear element is 
a zero-mean Gaussian process, Develet (Ref. 8) shows 
that 

(4) 

where ut is the mean-squared value of the phase error 
+(t)* 

In passing, two comments are important. In order to 
use this gain, one further assumption is necessary, i.e., 
the process +(t) must be first-order stationary. Other- 
wise the gain K ,  of the element, and hence the over-all 

3 
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receiver, is time-varying. Second is the fact that the 
nonlinear element occurs as a part of the feedback 
system and even though the input to the PLL may be 
Gaussian, the operation of a nonlinear element on a 
Gaussian process is in general non-Gaussian. These re- 
marks should be kept in mind when employing the 
quasi-linear model; however, if we are going to take 
the nonlinearity into consideration in the design at all, 
this approximation seems to be as simple and as mathe- 
matically tractable as any. As a matter of fact, Viterbi 
(Ref. 19) shows that, for the first-order loop and with no 
modulation present, Develet’s approximation is good SO 

long as u; < 1/2. 

The equivalent quasi-linear model is depicted in 
Fig. 3. For reasons that will become obvious later, we 
define the following transfer functions, i.e., 

and referring to Fig. 3, it is obvious that 

Further, the closed-loop transfer function of the quasi- 
linear PLL may be written by inspection from Fig. 3 as 

where 

K ,  = exp ( - 0:/2) 

Fig. 3. Quasi-linear phase-locked receiver 

4 

and the loop filter F(s) ,  obtained from Eq. (7), is 

From Eq. (5), we see that the output e,(t) of the PLL 
is proportional to the amplitude of the input e,(t). Thus 
the closed-loop response of the PLL is a function of the 
amplitude of the transmitted signal (see Eqs. 7 and 8). 
In a physical situation where the input power may 
deviate from the expected value, a bandpass limiter 
(when used ahead of the PLL) or an AGC amplifier 
helps remedy the situation. This phenomenon is due to 
an intrinsic characteristic of the limiter; i.e., it may be 
shown (Ref. 21) that the bandpass limiter is a constant- 
power device. In a later Section, we will determine the 
effects on the optimum design when no limiter or AGC 
amplifier is present and the power changes from the 
expected design value. 

Before leaving this discussion pertaining to the quasi- 
linear model, we point out that the noise component 
n’(t) of Fig. 3 may be moved to the input and designated 
as n:(t) ,  which is a wide-sense stationary, white Gaussian 
noise process with a single-sided spectral density of 

(9) 

Thus the noise that the equivalent receiver sees is now 
a function of the mean-squared phase error and the 
transmitter signal power. 

3. Linear Receiver Model 

To obtain the frequently used linear model, we utilize 
the assumption of Jaffe and Rechtin (Ref. 12) that 
+ ( t )  is small enough at all times that sin + N + and 
cos + ‘v 1, so that the quasi-linear model becomes the 
linear model and K ,  = 1. In the study to be carried out 
here, we will make use of the two models: the quasi- 
linear model and the linear model. At present these two 
models appear to be the only known forms that yield 
analytical results. 

4. Error Spectral Density for the Linear and 
Quasi-linear Models 

Through the use of the quasi-linear or linear approxi- 
mation, Eq. (3) becomes, in operator form, 
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where K ,  is given by Eq. (4) for the quasi-linear model, 
and K ,  = 1 for the linear model. Taking the Laplace 
transform of each term in this equation gives 

or 

whereas the absolute value of the phase error is 
+(s)+( -s), and the average value +(s)+( -s) becomes 

I I ’  

2 

n’(s)n’( -s) 
K,F(s)/s + 

l +  K r K ’ \ m F ( S )  s 

since n’(t) and O , ( t )  are uncorrelated. Now +(s)+(-s), 
O,(s)@,( -s), and n’(s)n’( -s) are respectively the phase 
error spectral density S,(s), the signal phase spectral 
density Se,(s), and the noise spectral density S,,(s). Thus 
Eq. (10) becomes 

I I ’  

+ 

Notice that the coefficient multiplying Se,(s) is l-H?(s), 
from Eq. (7), and that the coefficient multiplying S,,(s) is 

Upon referring the noise spectral density S,.(s) to the 
input and renaming, we have 

where 

The average phase error U; may be obtained from 
Eq. (11) by averaging over all frequencies, namely, 

The first term in Eq. (13) is, of course, that portion of 
the phase error due to N,(s )  # 1, while the second term 
is that portion of the phase error introduced by the 
additive noise process. Unfortunately, when the quasi- 
linear model is used, Eq. (13) is a transcendental equation 
in u,. For this reason the Wiener mean-squared-error 
filtering theory cannot be immediately invoked, although, 
as we shall see in the next Section, the filter (realizable 
or non-realizable) HT(s) which minimizes U, is nothing 
more than the Wiener filter. 

C. Specification of the Optimum Filter 

In the previous two Sections, we have discussed the 
problem of demodulation and presented receiver models 
to which the linear feedback type of analysis niay be 
applied. The problem considered in this Section is that 
of following a signal (or some linear operation on a sig- 
nal) corrupted by noise as “closely” as possible with a 
linear filter. The filter input, which is a function of time, 
is in general made up of both signal s ( t )  and noise n(t). 
It is desired to choose a linear filter such that the output 
y ( t )  “matches” the input signal. Owing to the noise, it is 
clearly impossible for y ( t )  to be identical with s ( t )  or some 
linear operation on s(t) .  The object then is to choose 
the linear filter that matches the two as “closely” as 
possible. 

5 
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1. Derivation of the Filter Equation 

follows: Let the observed input function 
Mathematically, the filtering problem may be stated as 

composed of a useful signal s ( t )  and noise n(t), be applied 
to the input of a filter 3. This filter 3c performs certain 
mathematical operations on the function f ( t ) ,  as a result 
of which we obtain y(t) (the filter output) at the output of 
3c. The output function y(t) may be regarded as the re- 
sult of applying an operator X to the input function f(t). 

The problem now is to select the filter X in such 
a manner that it reproduces some desired function g( t )  
with the “least” possible error. Here g ( t )  may be consid- 
ered to be functionally related to the signal and may be 
written in the form 

where 1 is a known mathematical operator. 

The difference 

is the instantaneous error of reproduction and, if noise is 
present, it is clear that the value of u(t )  will fluctuate 
randomly with time. The intensity of the fluctuations will 
be characterized by the mean-squared error, i.e., by the 
mathematical expectation of the square denoted by u2. 
Hence we look for that realizable filter 3c = H ( s )  (em- 
ploying the well-known and accepted Laplace transform 
theory notation) which makes U* a minimum. This is what 
we mean by selecting the filter that will follow the signal 
m(t) as “closely” as possible. By “realizable” we mean 
filters that may be constructed with circuits containing 
linear elements [more specifically, h(t) = L-’ [ H ( s ) ]  = 0 
for t < 0, as per Davenport and Root (Ref. 22, p. 174)]. 
It is possible to discuss the filtering of stored or recorded 
processes; however, we are not interested in this type of 
filtering here. 

The input signal and noise to the filter X are assumed 
to be stationary random processes; i.e., the probability 
distributions that describe the time functions are invari- 
ant with respect to a change of the time zero. Further, 
the signal and noise are presumed to be uncorrelated. 

For such a system the mean-square difference between 
the filter output y(t) and some linear operation -C on the 
input signal is given by 

(17) 

where S,(s) is the spectral density of the signal, L(s) is the 
desired linear operation, and S,(s) is the spectral density 
of the noise. From Eq. (17) we see that the mean-squared 
error is composed of two parts. The first part is the error 
obtained because the transfer function differs from L(s). 
We shall refer to this portion of the error as the signal 
distortion 

and the other portion of the error is due to the additive 
noise. 

Eq. (17) is a standard equation, the derivation of 
which is immediate when the signal and noise are trans- 
formed into their Laplace transforms. The mean-squared 
error is then found by squaring the absolute difference 
between the actual output signal and the desired output 
signal and integrating over all frequencies. 

Thus we desire to minimize U* of Eq. (17) by the proper 
choice of a realizable transfer function H(s) .  The trans- 
fer function H ( s )  [for a given S,(s) and Sn(s)] may 
be found by standard variational methods. In fact as 
Eq. (17) now stands, the optimum filter is nothing more 
than the standard Wiener filter (Ref. 23); however, the 
problem that we face is a bit different, although (as we 
shall see) the Wiener results will still apply. The primary 
difference is the following: in the quasi-linear model of 
the PLL we found that the input noise spectral density 
was a function of the phase error uV [see Eq. (13)]. In 
fact, if we remove this dependence in the term con- 
taining the noise spectral density by replacing it by 
f(d) S:,(s) where f(d) is some function depending on u2 

6 
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and where S,(s) depends only on the original additive 
noise process, Eq. (14) becomes 

(19) 

The variational technique that may be used to deter- 
mine H ( s )  is to add to the optimum realizable filter H ( s )  
the function ~ ( s ) ,  differentiate with respect to E ,  and 
set the derivative dut/dE and E equal to zero. Since 
E ( S )  is arbitrary, an equation for H ( s )  is obtained. The 
result is easily shown to be the filter that satisfies 
the following equation 

where the input spectra are rational functions and where 
the plus superscript signifies the left half-plane fac- 
tors. The subscript PR denotes that only those terms in 
the partial fraction expansion of the bracketed quantity 
which have left half-plane poles are to be taken. The 
spectral density Sf (s )  is given by 

Thus the general results due to Wiener are applicable 
to optimizing the quasi-linear receiver, with the excep- 
tion that the noise spectral density, for the white-noise 
case, is replaced by Eq. (9). 

2. The Infinite-Lag Filter and Other Optimization 
Criteria 

As is often the case, the input to the filter H(s )  is 
stored (recorded) for a certain interval of time (theo- 
retically, for - cot < co) and is then processed. The 
advantages of the filters given by Eq. (16) are the sim- 
plicity with which they can be implemented and the 
rapidity with which the output y ( t )  is obtained. On 
the other hand, the so-called “infinite lag” filters are 
more difficult to implement; however, their ability to 
suppress the noise n(t) is more effective since they make 
complete use of the input message. If, instead of impos- 
ing the realizability constraint on H(sj, we solve for the 

optimum filter (under a mean-squared-error criterion) 
that makes use of the input data for all t, we find from 
Eq. (19) that 

and the corresponding mean-squared error is given by 

In retrospect, there are other criteria that are available 
for specifying an optimum filter. For example, Gilchriest 
(Ref. 15) defines an optimum filter as one that minimizes 
the sum of a fixed transient error (properly defined) 
plus the rnean-squared noise error. The optimum filter 
equation [analogous to Eq. (20)l is identical with 
Eq. (20), with the exception that an arbitrary constant A, 
the so-called Lagrangian multiplier, premultiplies the 
equation, and S,(s) is replaced by I O,(s) I*. The Jaffe and 
Rechtin criterion (Ref. 12) is a special case of the 
Gilchriest criterion, which is suitable for selecting filters 
when the input’s signal process is deterministic (or non- 
stationary), as would be the case in tracking applications, 
e.g., in tracking signals of the form O,(t) = kt‘, etc. 

Thus far, the theory discussed above has been restricted 
to selecting linear filters, and we have not considered the 
possibility of using nonlinear filters. This idea is, how- 
ever, a bit of a paradox in that the PLL is inherently a 
nonlinear filter whose “exact” performance characteristics 
still remain unknown in the presence of modulation. For 
linear filtering of Gaussian processes it is well known 
that a large class of criteria is equivalent to minimizing 
the mean-squared error; e.g., consider the detection of a 
sure signal in noise where the criterion of maximizing the 
output signal-to-noise ratio is equivalent to minimizing 
the mean-squared error or alternatively maximizing the 
likelihood function (see Refs. 1 and 28). 

Finally, we note that this theory requires a statistical 
knowledge about the data signal and noise, i.e., the spec- 
tral densities. Consequently, the detector or demodulator 
that we select is highly dependent upon these quantities. 
For the noise process, available evidence does indeed 
indicate that “additive white Gaussian noise” is the best 
way to characterize the channel disturbances in space 
telemetry; however, the random process governing the 
behavior of m(t) may not be clear at all. It has been 
fashionable to postulate the data signal spectral density 
(and we shall do so here) and thus determine the detector. 

7 
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D. Specification of the Optimum Filters 
for FM Reception 

In this Section we shall specify the optimum loop 
filter F(s) and the optimum output filter F,(s). In order 
to apply the filter theory of Section C, however, we must 
specify the message spectral density S,(s). For purposes 
here, we shall assume that m(t)  is a unit-variance station- 
ary time series whose spectrum is' 

Physically, Eq. (22) represents a modulation waveform 
that has the same power spectrum as a white-noise 
process passed through an RC filter possessing a 3-db 
frequency of a / 2 ~  cps. Lehan and Parks (Ref. 24) were 
apparently the first to make the PLL analysis with this 
type of spectrum. Viterbi (Ref. 17) also uses this spec- 
trum in making FM, PM, and AM calculations. 

1. The Optimum Filters 

It is clear from Fig. 3 that there are two types of errors 
that are made at the receiver. One is the phase error a:, 
which is the error due to the inability of the receiver 
VCO to follow the incoming phase Ol(t) exactly. To in- 
sure proper operation of the PLL, i.e., to make the loop 
operate as linearly as possible, it is necessary to minimize 

by properly selecting the loop filter F(s).  The other 
error is the frequency error u:, i.e., the total modula- 
tion error. In order that the receiver reproduce the 
modulation waveform m(t)  as faithfully as possible and 
that the PLL follow the observed data as closely as pos- 
sible, it is necessary that we simultaneously minimize 
U; and also a;. 

It may seem, at first, that it is impossible to minimize 
the phase and frequency errors simultaneously; however, 
since the system is linear, the filter H,(s)  and hence the 
loop filter F(s )  may be determined so as to minimize 05, 
and the overall receiver filter H ( s )  may be adjusted to 
minimize af . Having determined the loop filter F ( s )  that 
minimizes US, we may adjust the output filter F,(s) so as 
to minimize u; when H(s) is fixed. The ability to carry 

'From the physical standpoint this spectrum is convenient to use, 
in that the optimum closed-loop transfer function turns out to be 
a second-order system. Second-order loops have been mechanized 
in the past, and the second-order loop is the optimum filter for 
separating such a time series from white Gaussian noise. 

out the optimization procedure in this manner is a result 
of the quasi-linear receiver model. 

Since e,(t) is the phase variation of the signal portion 
of the received waveform $(t)  [see Eq. (l)] and since 
the desired output is m(t) ,  i.e., the time derivative of 
K,' O,(t), the linear operation that must be performed 
on the input signal is one of differentiation; hence, 

L(s)  = Kl's and 

where, from Eq. (9), the double-sided noise spectral 
density is 

and the phase spectral density S,,(s), obtained from 
Eq. (22), becomes 

Kt2 2a Kf 
S,,(s) = - - S,(s) = 

S2  s y s 2  - a*) 

Direct substitution of Eqs. (24) and (25) into Eq. (20) 
produces the optimum linear filter that minimizes ut, 
namely: 

a y y  - 1)Zs 
H(s)  = 2K1(s2 + ays + d 8 )  

where 

Note the dependence of H(s)  on the phase error u ~ .  It 
seems appropriate to refer to mf, the ratio of the modu- 
lation index to the 3-db frequency, as the deviation ratio 
and to R as the input signal-to-noise ratio in a bandwidth 
of 1 cps. Thus, the filter H(s)  produces the optimum 
replica of K;' q ( t )  for each set of input signal and noise 
powers. 
~ 

T h i s  result is a trivial generalization to Viterbi's result (Ref. 17). 
Apparently Lehan and Parks (Ref. 24) were the first to arrive at 
this equation with K, = 1. 

8 



JPL TECHNICAL REPORT NO. 32-637 

T~ minimize we determine the quasi-linear filter 
H ~ ( ~ )  using Eqs. (24) and (25) in Eq. (20) with L ( ~ )  = 1. 
Direct substitution yields the result3 

W), and typical network configurations are shown in 
Fig. 4. Various methods of physically realizing the filter 
function F(s) have been investigated by Martin (Ref. 26). 
The output filter F,(s) may be accomplished with net- 
work (b) of Fig. 4 by letting C, = 0. Rewriting F,(s) and 
relating this to the pertinent time constants, we have 

a[(y - 1)s + sa] 
s2 + ays + a's Hds) = (28) 

where 6 and y are defined in Eq. (27). 

The loop filter F ( s )  may be determined using Eq. (28) 
in Eq. (8). Thus where 

whereas the output filter is determined using Eq. (6). 
This filter function is 

Both filters F(s )  and F,(s) may be realized with RC 
networks. 

2. Network Realization Methods 

means of a lag-lead network. Rewriting F(s), we have 
Consider first the realization of the loop filter F(s) by 

where 

K ,  = a8 = a dc gain 
and 

Thus the time constants T1 and T 2  are directly related to 
the basic communication parameters P ,  N o ,  mf, and a. 

Networks of this type are sometimes referred to as 
proportional-plus-integral-control networks (Refs. 10 and 

T = R,C, = time constant 

An important conclusion is that the design of the filter 
function H ( s )  does not depend on K,; however, design of 
the output filter F,(s) and the loop filter F(s) does. Con- 
sequently, the performance of the receiver is not affected 
by variations in the receiver VCO gain, provided the 
gain of F(s) and F,(s) is adjusted accordingly. Of course, 
K ,  + 0. Further, we see that the optimum filter's pole- 
zero configuration depends, unfortunately, on both the 
input signal and noise powers. This means that in order 
to maintain optimum demodulation at the receiver in the 
presence of variations in the received signal and noise 
mean-squared strengths, the filter must be adaptive. 
Designing such a filter would be extremely difficult, if 
not impossible. Therefore, in Section E, we shall fix the 
filter structure, which is optimum only for a certain 
signal power P and noise power No,  and compute the 
filter performance when the filter is subjected to new 
signal and noise levels. 

I.. 
44 

T 2  = u - '  

3See Footnote 1. Fig. 4. Realization of the loop filter F(s) 
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E. Receiver Performunce When the P l l  Is 
Preceded by an AGC Amplifier 

Having determined the various filter components that 
comprise the receiver structure, we shall now determine 
its performance. The problem here is to “compare” a 
fixed filter, which is optimum for only one value of input 
signal-to-noise ratio, say RD, with the optimum receiver 
structure, Briefly, we shall fix the filter, designed to be 
optimum at a value of R = R D ,  and then subject it to a 
new signal power P ,  and a new noise power N , .  Of 
course, even though the loop filter is fixed, the loop 
bandwidth changes as a function of P, .  Practically speak- 
ing, however, the loop would normally be preceded by 
an AGC amplifier; we may hence assume that, for this 
Section, PI = P. In Section I, we investigate the per- 
formance when the input power changes from the ex- 
pected value. The loop bandwidth is defined in Section H. 

1. The Receiver Performance Criterion 

First, we must define what we mean by receiver per- 
formance. One performance criterion that has been used 
successfully for design purposes is that of output signal- 
to-noise ratio. There are several definitions that are 
available for describing the signal-to-noise ratio; for 
example, Choate (Ref. 18) defines the output signal-to- 
noise ratio as the ratio of the mean-squared output signal 
power to total mean-squared error. An obvious flaw 
(error) in this definition is the fact that Choate has in- 
cluded the signal distortion term [see Eq. (IS)] in both 
the numerator and denominator. If we neglect the signal 
distortion term in the denominator, Choate’s definition 
becomes the ratio of the mean-squared output signal 
power to the mean-squared output noise power, which 
has been used by many authors (see Ref. 1). This defi- 
nition, however, has the disadvantage of approaching 
infinity as the additive noise approaches zero, and in any 
physical (nonadaptive) system this is not true because 
the system introduces a certain amount of signal distor- 
tion. Another definition is to consider the output signal- 
to-noise ratio as being the ratio of that portion of the 
output signal y(t) which correlates with the desired out- 
put signal m(t) to the total mean-squared error found by 
subtracting the output y(t) from the desired output m(t), 
squaring, and averaging, i.e., 

(33) 

However, in this definition the numerator includes an out- 
put power component that does not appear in the output. 

1 0  

For our purposes here we define the “output” signal- 
to-noise ratio Po as the ratio of the mean-squared value of 
the desired signal m(t) to the total mean-squared filter 
frequency error of, i.e,, the noise in the system is taken 
to be equal to of. Thus 

(34) 

is our measure of signal fidelity, and we see that this 
definition is nothing more - than the reciprocal of the 
Wiener error. [Note that mz(t) = 1.1 

Justification for the use of Eq. (34) follows. Regardless 
of how the output signal y(t) is written, it contains a 
certain amount of power, say u:. Furthermore, any defi- 
nition of output signal-to-noise ratio that is reasonable 
must be consistent with 2, i.e., the sum of the numera- 
tor and the denominator must equal 0:. Choate’s defi- 
nition (Ref. 18) is not consistent with a constant 
mean-squared output power, and, neglecting the signal 
distortion term in the numerator, it has the other dis- 
advantage of approaching infinity when the system 
noise is zero. Although Eq. (33) is not consistent with 
oi ,  Eq. (34) is; moreover, Eq. (34) is nothing more than 
the reciprocal of the criterion chosen for determining the 
optimum filter. 

2. The Receiver Threshold Criterion 

Before the characteristics of the receiver are com- 
puted analytically, it remains to define the PLL thresh- 
old. Develet (Ref. 18) and Viterbi (Ref. 17) take the 
threshold condition of the PLL to exist when the total 
mean-squared phase error (signal distortion plus noise 
distortion) is one radian squared. This definition seems 
to be justifiable from an experimental viewpoint, 

In the results to follow we shall assume that the PLL 
threshold exists when two conditions are satisfied. First, 
the threshold of the PLL is defined to be the locus of a 
point that moves so that the total mean-squared phase 
error U; is equal to a constant C. (We shall specify C in 
Section I.) The other condition assumes that the noise 
and available signal powers at threshold are those that 
are expected under the worst channel conditions, i.e., 
those resulting from communication at the greatest range 
expected. 
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3. Derivation of the Output Signal-to-Noise Ratio 
and the Receiver Threshold Characteristic 

The output signal-to-noise ratio may be easily com- 
puted using Eq. (17) and the appropriate filter and signal 
density equations. First we compute the signal distortion 
from Eq. (18). This term is easily obtained by direct 
substitution of Eqs. (25) and (48) into Eq. (18) where 
L(s)  = K;’s. Equation (48) is derived in Section F under 
the assumption that the loop filter F(s) is fixed and is 
determined by the initial design conditions, Obviously, 
when the loop is preceded by an AGC amplifier, the 
over-all filter function H(s )  changes only when the quasi- 
linear model is used, Le., it depends on the total phase 
error. For the linear model the over-all fixed filter is 
determined by the design signal and noise levels. 

Substituting Eqs. (25) and (48) into Eq. (18) and 
carrying out the integration in the complex plane give 

where 

a = 1 + p ( y  - 1) 

Similarly, that portion of the total error due to the addi- 
tive noise is easily found from the second term of 
Eq. (17). This turns out to be, for S,,.(s) = N , , / K ; P ,  

2 (Y - 
an> = 

a ( y  + 1)’ (37) 

while for a new mise spectral density of S,,# (s) = YJKFP, 
1 

2 Nl ( y  - 
U1&. = - 

N ,  a ( y  + 1)’ 
(38) 

If we substitute Eqs. (35) and (38) into Eq. (34) we find 
the “output” signal-to-noise ratio Po, namely, 

where 

and R D  is the input signal-to-noise ratio in a bandwidth 
of a/2x cps for the greatest range expected, while R is 
the actual input signal-to-noise ratio (due to changing 
channel conditions) referred to a bandwidth of a / 2 ~  cps. 
As a novel by-product of the analysis, the signal-to-noise 
ratio for the optimum (adaptive) receiver is obtained 
when R = R D ,  i.e., 

- (Y + 
4Y PQPt - 

This result was originally derived by Viterbi (Ref. 17). 

One final computation is that of determining the 
threshold locus of the PLL. This locus is found from 
Eq. (17) with L(s)  = 1, H(s)  replaced by HP(s) of Eq. (28), 
and S,?(s) replaced by Eq. (25). The noise spectral density 
S,;(s) is obtained from Eq. (24) by replacing No by N,.  

Substituting these quantities into Eq. (17) and per- 
forming the integration, 

2m; 

ap (Y’ - 1) 0: = 

3 (42) 
X [ l + p  (Y2 - 1) 

P P  (Y  - 1)’ + Y2 - 11 

for the suboptimum or fixed-receiver structure. Letting 
p = 1, we obtain the desired threshold locus 

8m2, 

In Section I, we will have more to say about the con- 
stant C. 

F.  Receiver Performance for Reception of a Signal 
Whose Power I s  Different From the Design Level 

It was pointed out in Section B that the closed-loop 
transfer function of the PLL depends on the received 
signal power P .  In this Section, we wish to determine 
the effects on receiver performance when the transmitter 
power, say P , ,  differs from the design level P,. We shall 
assume further that the noise spectral density is N o  w/cps 
and that it remains fixed. 

1 1  
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Since the closed-loop transfer function of the PLL 
varies with the received signal power, it is necessary to 
determine the new transfer function when the filter is 
subjected to the new signal power PI. Contrary to the 
situation in Section E (where only the error due to noise 
affected the performance) we find that a change in 
signal power affects both the noise and the signal error. 
This is, of course, due to the changing closed-loop 
transfer function, which occurs in both of the error 
expressions. 

From Eq. (7) we may rewrite, for an arbitrary signal 
power PI, the quasi-linear PLL receiver transfer function 
as 

(44) 
,--/ 

where 

K ,  = exp ( - &/2) (45) 

and u’, is the mean-squared phase error for this new 
power level. Substituting the fixed-loop filter F(s) ,  
Eq. (29), evaluated at design levels into Eq. (44), and 
rearranging, 

where 

At p = 1, H b ( s )  reduces to HV (s) as it should. The over- 

all fixed FM receiver filter is obtained from Eqs. (6) and 
(30), namely, 

p d  ( y  - 1) s 
W(s)  = (48) 2 K ,  Ts.’ + a (1 + p (7 - 1)) s + a’ 8p] 

The new frecplency error uf is easily obtained from 
E(l. (17). First we compute the new signa1 distortion 
term using Eqs. (25) and (48) in Eq. (18). Carrying out 
the neccssary integration, we find 

where 

a =  1 + P ( y -  1) 

and ,8 is defined in Eq. (47). 

On the other hand, the variance of the new noise error 
is easily found by substituting Eq. (48) in the second 
term of Eq. (17) and integrating. The result is 

2 (Y - 
1 a ( y  + 1)2 

un’ = 

Hence, the new “output” signal-to-noise ratio p: is, from 
Eqs. (49) and (50), 

1 

-fi ’ a ( y  + 1)2 

which is the required result. 

The new phase error U: that results from a change in 
received signal power may be written as 

and becomes 

3 (53) 
2m; 

ap (y2 - 1) 
2p ( y  - 1)2 + yz - 1 

( Y 2  - 1) 
u2 = 

when Eq. (46) is substituted into Eq. (52) and the inte- 
gration is performed. Thus, Eqs. (51) and (53) are the 
required results needed for specifying the receiver 
performance. 

G. Receiver Performance When the PLL Is  
Preceded by a Bandpass Limiter 

In Section E, we investigated the demodulator per- 
formance when the PLL is preceded by an AGC ampli- 
fier that holds the signal level constant and when the 

12 
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loop filter is designed in accordance with the signal 
power P and noise power No expected under worst 
channel conditions. In this Section we again fix the loop 
filter as was done in Section E and insert a bandpass 
limiter ahead of the PLL. Since the optimum demodu- 
lator requires the use of complex auxiliary servo loops 
that must be capable of continually adjusting the pole- 
zero configuration of the demodulator, it behooves the 
design engineer to seek ways and means of mechanizing 
the receiver so as to have it perform at a near-optimum 
level without the use of the exact equipment called for 
by the deceptively simple adaptive filter equations. It 
appears, from an experimental standpoint, that the band- 
pass limiter may be an excellent engineering approxima- 
tion to the complex servo system that we require for 
optimum performance. A comparison of the results to 
f d 0 W  with those of Section E provides the engineer with 
design data that will allow him to select the AGC ampli- 
fier or the bandpass limiter as a possible means for ob- 
taining near-optimum performance. 

1. Derivation of the Threshold Characteristic and 
Output Signal-to-Noise Ratio 

The appropriate filter functions required in the deriva- 
tion are given by Eqs. (46) and (48). As a matter of fact 
we may make use of the results obtained in Section F for 
the signal distortion term. That portion of the error due 
to the new noise N ,  is easily found by substituting 

v 

Eq. (48) into the second term of Eq. (13) a i d  integrating. 
The result is 

(54) 

The new phase error, which results from a change in 
received signal and noise power, may be written as 

(55) 

and becomes 

when Eq. (46) is substituted into Eq. (55) and the inte- 
gration is performed. 

Thus to obtain the resulting “output” signal-to-noise 
ratio we need to relate the ratios N J N ,  and P l / P D  to 
the input-output signal-to-noise ratio relationship of the 
limiter. This, however, requires analyzing the limiter, 
and we shall present this analysis next. 

2. Signal-to-Noise Ratios in Bandpass Limiters 

In Ref. 21, a general analysis has been made relating 
output signal and noise powers and input signal and 
noise powers for bandpass limiters having odd symmetry 
in their limiting characteristics. 

Briefly, a bandpass limiter is an electronic device that 
consists of a limiter followed by a bandpass filter. The 
form of the limiter characteristic is 

where al is the gain of the limiter and x is a Gaussian 
time series. The case n = 1 corresponds to a linear am- 
plifier, while the case n = co corresponds to the ideal 
symmetrical limiter (or clipper). For n = 00 ,  Davenport 
(Ref. 21) has shown that the following results are true: 

(57) 

for (;)i + 0 

where ( S / N ) ,  is the signal-to-noise power ratio at the 
limiter output, ( S / N ) ;  is the signal-to-noise power ratio 
at the limiter input, and 

13 
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Further, Davenport shows that 

(59) 

which is a variation of about 4.06 db. (See Fig. 5 for the 
exact results.) These results have been experimentally 
verified by Youla of this Laboratory (Ref. 12). Equations 
(58) and (59) suggest that the bandpass limiter possesses 
the property of being able to hold the output power con- 
stant. Consequently, if the noise input to the system is 
increased, the signal strength at the limiter output must 
decrease. However, the noise bandwidth B ,  of the loop 
has been shown to be directly dependent on the signal 
power P (see Section H). Thus an increase in input noise, 
for a fixed signal power, causes the output signal power, 
and hence the loopbandwidth, to be reduced; as a 
result, the phase jitter a t  the VCO output is a smaller 
percentage of the input noise. Therefore, the over-all 
demodulator appears to be self-adaptive. 

Using Eqs. (58) and (59) and assuming that the gain of 
the bandpass limiter is adjusted so that the output signal 
power plus noise power are those values for which the 
optimum loop was designed, it is easy to show that 

where 

R = Input signal-to-noise ratio of the bandpass 
limiter 

R, = Input signal-to-noise ratio for which the loop 
was designed 

P , ,  N ,  = Bandpass limiter output noise and signal 
levels, respectively 

and 

P,, N o  = Signal and noise levels for which the loop 
was designed. 

Thus Eq. (60) may be substituted into Eqs. (49) and (54) 
to yield the output signal-to-noise ratio, i.e., 

1 

s;+ (-) 1 + RD [ ( y  - ”‘I (61) 
P’, = 

1 + R  ( Y ( y + l )  

where Siis given by Eq. (49) and 

which is the required result. 

Before using the results obtained above, a word of 
caution should be issued. Recall that the optimum de- 
modulator filters were selected on the basis that the 
perturbing noise was white and Gaussian. In fact, now 
that the bandpass limiter has been inserted, it is incon- 
ceivable that the noise that the PLL sees is white or 
even Gaussian. The fact is that under the original cri- 
terion, the PLL is now suboptimum since the disturbing 
noise is non-Gaussian and non-white; however, the over- 
all system is optimum when R = Rn, and it may actually 
perform optimally for R > R,. This would indicate that 
even though the exact mechanization is not possible, the 
bandpass limiter, in combination with the PLL and 
the output filter, serves as the engineering device that 
performs almost identically with the exact mechaniza- 
tion. In Section I, we shall graphically illustrate its per- 
formance and compare it with the adaptive filter. 

Furthermore, in deriving the “output” signal-to-noise 
ratio p:, we were forced to assume that the noise out of 
the bandpass limiter was white or at least contained a 
spectrum that was relatively flat over a band of fre- 
quencies that was wide in comparison with the band- 
width of the PLL. In computing the signal distortion no 
such assumption was made, nor was it necessary. If the 
bandwidth of the bandpass filter turns out to be wide 
when compared with the loop bandwidth B L ,  we would 
expect, to a good approximation, that the output noise 
spectrum of the bandpass limiter would be relatively 
flat; thus, for all practical purposes, the PLL sees noise 
that has a relatively flat spectrum. Hence the assump- 
tion that the noise has a flat spectrum over a band of 
frequencies much greater than B L  cps seems to be justi- 
fiable, and the “output” signal-to-noise ratio p’, is valid. 

1 4  
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Fig. 5. Bandpass limiter characteristics 

H. Transient Response of the Optimum Filter 

In order to discuss the transient response of the opti- 
mum filter, it is necessary to relate the transfer function 
H,(s) to a standard form given by Truxal (Ref. 27) 
for a second-order system. This standard form, using 
Truxal's notation, is 

where t represents the system damping factor. A t of 1 
corresponds to critical damping, [ < 1 corresponds to an 
underdamped (oscillatory) system, and < > 1 corresponds 
to an overdamped (nnnosci!latory) system. For purposes 
of comparison, we rewrite Eq. (28) as 

The quantity Q71 of Eq. (63) is taken to be the natural 
loop frequency, while z1 is the closed-loop system zero. 
Thus, comparison of Eqs. (63) and (64) shows that 

2 = a's 

with a total error of less than 256-' T / c .  Experiments- evi- 
dence shows that if the damping factor of the loop is 
made equal to l / f l  a satisfactory balance is achieved 
between the transient error and the output noise. Thus 
if 6 = 25, an equality that must be true if the optimum 
frequency demodulator is to produce the signal with any 
fidelity at all, [ A 0.707 with a total error less than, or 
equal to, 1%. 

A parameter that has received considerable attention 
in the design of a PLL loop is the loop-noise band- 
width BL, defined as 

Substituting Eq. (64) into Eq. (66) and integrating give 

15 
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Solving Eq. (67) for y ,  we find 

y = 2  ( 1 + -  'fL)[' d G ]  (68) 
1 + -  

which is asymptotic to 

y z; (1 + F) (69) 

with an error less than 

For large y or a large normalized 3-db loop bandwidth 
BL/a, we have 

16 

Substituting Eq. (70) into Eq. (64) we obtain, for reason- 
able demodulator input conditions, 

3 
1 + - S  

~ B L  
3 9 

S? 

Hrp(s) A 
1 + - s + -  4B.5 32Bi 

which has a damping factor of l/*, Interestingly 
enough, if one derives the optimum closed-loop linear 
filter that minimizes the peak error I O1 - O 2  I l l l a x  + nmax 
when the filter is subjected to a frequency ramp and 
further demands that the damping factor be equal to 
l/fl, a filter that is identical with Eq. (71) results 
(Refs. 12 and 16). This is a striking result, for it requires 
that, given reasonable input demodulator conditions and 
proper construction of the loop filter F(s ) ,  the frequency 
demodulator that minimizes the IViener error for an 
RC-filtered white-noise modulating spectrum will also 
perform optimally, for all practical purposes, under a 
peak error criterion where the signal to be tracked or 
followed is a frequency ramp. This result should be very 

R, db 

Fig. 6. Performance characteristics for the linear demodulator ( . a = l )  
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pleasing to design engineers who (for some time) have 
apparently been building phase-locked loops with trans- 
fer functions approaching that of Eq. (71). 

1. Graphical Results for the Linear and 
Quasi-lineur Demodulators 

In Fig. 6 we have graphically illustrated the perfor- 
mance of the linear FM demodulator for three different 
receiver terminations: the optimum PLL demodulator 
and the phase-locked demodulator (which is designed to 
be optimum for the most deleterious channel conditions) 
preceded by a bandpass limiter or an AGC amplifier. 
From Fig. 6 it is evident that the optimum demodulator 
outperforms either of the other two realizations; how- 
ever, the “fixed PLL, when preceded by the AGC 
amplifier, performs better than the loop that is preceded 
by a bandpass limiter. The amount of superiority 
becomes smaller as the modulation index mf increases. 
In either of the two suboptimum systems the signal-to- 
noise ratio p becomes asymptotic (for large R)  to the 

reciprocal of the signal distortion S d  initially designed 
into the system. For comparison purposes we indicate 
the performance (derived in Ref. 29) of an amplitude- 
modulated double-sideband or single-sideband sup- 
pressed carrier system that demodulates the noisy received 
data by coherent frequency translation and by smoothing 
the resulting waveform with a Wiener filter. The im- 
provement obtained by using FM is clearly manifested. 

In Figs. 7 and 8 we have illustrated the performance 
of the same three systems when the quasi-linear receiver 
models are used. Figure 7 has been prepared under the 
assumption that receiver threshold occurs when the total 
phase error equals one-half radian squared, i.e., C = 1/2, 
and Fig. 8 illustrates the performance of the three sys- 
tems for C = 1. Notice the higher threshold character- 
istic for the situation where C = 1/2. 

The “dipping” behavior for either of the suboptimum 
quasi-linear systems may be explained as follows. As 
before, the asymptotic behavior (for large R)  is ultimately 

24 

2c 

I €  

Q 12 

E 

1 

I 

R, db 

Fig. 7. Performance characteristics for the quasi-linear demodulator ( D; = 1 ) 
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Fig. 8. Performance characteristics for the quasi-linear demodulator ( ui = Vi) 

determined by the signal distortion S d  designed into the 
system. For the linear receiver models, this value of S,i 
was constant for all R > R,. In the quasi-linear receivers, 
however, the signal distortion S d  is a function of the 
initial design parameters and the phase error is a mini- 
mum at threshold (worst channel conditions expected). 
As R increases beyond R,,, the signal distortion increases 
until the phase error is so small that S d  is again deter- 
mined by the same function of the signal-to-noise ratio 
existing in the channel. These curves show the importance 
of keeping the system operating optimally. In fact, for 

C < 1/2, it has been shown that the quasi-linear model 
specifies fairly accurately the performance of a PLL. As 
before, the “fixed” loop, when preceded by an AGC 
amplifier, outperforms the “fixed loop preceded by a 
bandpass limiter. 

Comparison of Fig. 6 with Fig. 8 shows that the linear 
system threshold characteristic is slightly lower than that 
of the linear receiver. These results should prove bene- 
ficial to engineers faced with the problem of designing 
second-order PLL frequency demodulators. 

I 1 8  
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NOMENCLATURE 

3-db bandwidth of message spectrum 

loop bandwidth 

constant 

capacitance 

Laplace transform of the input signal to the VCO 

loop filter output 

loop filter 

output filter 

transfer function of the receiver 

closed-loop transfer function 

impulse response of the receiver 

dc gain 

gain of the nonlinear receiver element 

gain of the receiver VCO, rad/sec/v 

gain of the transmitter VCO, rad/sec/v 

arbitrary filter 

inverse Laplace transform 

desired linear operation in transform nota- 
tion 

known mathematical operator 

deviation ratio (ratio of modulation index 
to the 3-db frequency) 

random signal used to modulate the trans- 
mitter 

single-sided spectral density, w/cps 

bandpass limiter output noise level 

average noise power at the limiter output 

Laplace transform of equivalent additive 
noise n(t) 

additive white Gaussian channel noise 

wide-sense stationary, white Gaussian noise 
process ff1 

average power of received signal E , & )  

bandpass limiter output signal level &(tj 

average signal level for which loop was 
designed 

input signal-to-noise ratio 

input signal-to-noise ratio in a bandwidth 
of a/27 cps for the greatest range expected, 
or the input signal-to-noise ratio for which 
the loop was designed 

reference signal at output of receiver VCO 

signal-to-noise power at the limiter input 

signal-to-noise power at the limiter output 

signal-to-noise ratio 

signal distortion 

arbitrary spectral density 

message spectral density 

spectral density of the additive channel 
noise 

spectral density of the noise n’(t) that pro- 
duces the same effects as n(t) 

double-sided noise spectral density 

average signal power at the limiter output 

spectral density of an arbitrary signal s(t) 

signal-phase spectral density 

phase-error spectral density 

arbitrary signal 

the value that the Gaussian time series x(t) 
assumes at time t 

input of an amplitude-sensitive element 

response of amplitude-sensitive element 

linear filter output 

closed-loop system zero 

relationships between basic system param- 
eters 

gain of the limiter 

arbitrary variation in H ( s )  

instantaneous error of reproduction 
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NOMENCLATURE (Con t'd) 

Laplace transform of phase modulation u2 mean-squared error of reproduction 
used at the transmitter 

Laplace transform of the estimate of e&) 

phase modulation used at the transmitter 

estimate of the phase modulation used at 
the transmitter 

Lagrangian multiplier 

system damping factor 

frequency-modulated wave 

ratio of the mean-squared value of the de- 
sired signal to the total mean-squared filter 
frequency error ow natural loop frequency 

uf 

u:, 

mean-squared value of the total frequency 
error 

mean-squared error due to n: 
1 

u2 mean-squared value of y ( t )  

mean-squared error in resulting variation 

mean-squared value of the total phase error a2 
cp 

+(t) phase error 

+(s) 
+(t) observed data 

Laplace transform of the phase error +(t) 
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